Fore-Aft Ground Force Adaptations to Induced Forelimb Lameness in Walking and Trotting Dogs

نویسندگان

  • Jalal Abdelhadi
  • Patrick Wefstaedt
  • Ingo Nolte
  • Nadja Schilling
چکیده

Animals alter their locomotor mechanics to adapt to a loss of limb function. To better understand their compensatory mechanisms, this study evaluated the changes in the fore-aft ground forces to forelimb lameness and tested the hypothesis that dogs unload the affected limb by producing a nose-up pitching moment via the exertion of a net-propulsive force when the lame limb is on the ground. Seven healthy Beagles walked and trotted at steady speed on an instrumented treadmill while horizontal force data were collected before and after a moderate lameness was induced. Peak, mean and summed braking and propulsive forces as well as the duration each force was exerted and the time to reach maximum force were evaluated for both the sound and the lame condition. Compared with the sound condition, a net-propulsive force was produced by the lame diagonal limbs due to a reduced braking force in the affected forelimb and an increased propulsive force in the contralateral hindlimb when the dogs walked and trotted. To regain pitch stability and ensure steady speed for a given locomotor cycle, the dogs produced a net-braking force when the sound diagonal limbs were on the ground by exerting greater braking forces in both limbs during walking and additionally reducing the propulsive force in the hindlimb during trotting. Consistent with the proposed mechanism, dogs maximize their double support phases when walking. Likely associated with the fore-aft force adaptations to lameness are changes in muscle recruitment that potentially result in short- and long-term effects on the limb and trunk muscles.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acceleration and balance in trotting dogs.

During quadrupedal trotting, diagonal pairs of limbs are set down in unison and exert forces on the ground simultaneously. Ground-reaction forces on individual limbs of trotting dogs were measured separately using a series of four force platforms. Vertical and fore-aft impulses were determined for each limb from the force/time recordings. When mean fore-aft acceleration of the body was zero in ...

متن کامل

Inertial sensor-based system for lameness detection in trotting dogs with induced lameness.

Lameness detection can be challenging in dogs, as reflected in the reported low inter-rater agreement when visually assessing lameness. The aim of this study was to use an inertial sensor-based system to detect and quantify induced distal and proximal limb disturbances mimicking supporting and swinging limb lameness in dogs trotting on a treadmill by measuring vertical head and pelvic movement ...

متن کامل

Effects of mass distribution on the mechanics of level trotting in dogs.

The antero-posterior mass distribution of quadrupeds varies substantially amongst species, yet the functional implications of this design characteristic remain poorly understood. During trotting, the forelimb exerts a net braking force while the hindlimb exerts a net propulsive force. Steady speed locomotion requires that braking and propulsion of the stance limbs be equal in magnitude. We pred...

متن کامل

Effects of grade and mass distribution on the mechanics of trotting in dogs.

Quadrupedal running on grades requires balancing of pitch moments about the center of mass (COM) while supplying sufficient impulse to maintain a steady uphill or downhill velocity. Here, trotting mechanics on a 15 deg grade were characterized by the distribution of impulse between the limbs and the angle of resultant impulse at each limb. Anterior-posterior manipulation of COM position has pre...

متن کامل

Effects of fore-aft body mass distribution on acceleration in dogs.

The ability of a quadruped to apply propulsive ground reaction forces (GRF) during rapid acceleration may be limited by muscle power, foot traction or the ability to counteract the nose-up pitching moment due to acceleration. Because the biomechanics of acceleration change, both throughout the stride cycle and over subsequent strides as velocity increases, the factors limiting propulsive force ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012